Polynomial hulls and an optimization problem
نویسندگان
چکیده
منابع مشابه
Polynomial Hulls and an Optimization Problem
We say that a subset of C n is hypoconvex if its complement is the union of complex hyperplanes. We say it is strictly hypoconvex if it is smoothly bounded hypoconvex and at every point of the boundary the real Hessian of its defining function is positive definite on the complex tangent space at that point. Let Bn be the open unit ball in C . Suppose K is a C compact manifold in ∂B1 × C , n > 1...
متن کاملPolynomial hulls and positive currents
We extend the Wermer’s theorem, to describe the polynomial hull of compact sets lying on the boundary of a smooth strictly convex domain of Cn. We also extend the result to polynomial p-hulls and apply it to get properties of pluriharmonic or p.s.h. positive currents. RÉSUMÉ. Nous décrivons à la suite des travaux de Wermer, l’enveloppe polynomiale des ensembles compacts contenus dans le bord d’...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملSome Results on Polynomial Numerical Hulls of Perturbed Matrices
In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.
متن کاملEla Polynomial Numerical Hulls of Order
In this note, analytic description of V 3 (A) is given for normal matrices of the form A = A 1 ⊕ iA 2 or A = A 1 ⊕ e i 2π 3 A 2 ⊕ e i 4π 3 A 3 , where A 1 , A 2 , A 3 are Hermitian matrices. The new concept " k th roots of a convex set " is used to study the polynomial numerical hulls of order k for normal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2004
ISSN: 1050-6926,1559-002X
DOI: 10.1007/bf02922104